Chapter 4.1 - Increasing and Decreasing Functions

 

1.
 

 2.

          Find constants a, b, c and d such that the graph of f(x) = ax^3 + bx^2 n+ cx + d will increase to the point (1,12), decrease to the point (4, -15) and then continue increasing.

Answer:  a = 2, b = -15, c = 24, d = 1


 

Chapter 4.2 - Critical Points, Local Maxima, and Local Minima

 

3.
 

 

4. Graph the curve f(x) = 0.1 x^3 + 0.3 x^2 - 2.4x + 2 by finding maximum and minimum points and intercepts if possible. 

 

5.     For each of the following, you are given a graph of y = f(x), and your job is to graph y = f '(x)

 

a)
 

 

b)
 

 

c)
 

 

6. 
 

 

Chapter 4.3 - Vertical and Horizontal Asymptotes

 

7.
 

 

8.
 
 

 

9. abc
 

 

10. ab
 

 

11.
 

 

Chapter 4.4 - Concavity and Points of Inflection

 

12
 

 

13 
 

 14 

 

 

15.     Find constants a, b and c such that the function y = a x^3 + b x^2 + cx has a point of inflection at (-2, 88) and a local minimum at (2, -40).

Answer:  a = 1, b = 6, c = -36

 

Chapter 4.5 - An Algorithm for Curve Sketching

 

16.    Graph y = x^3 - 7x^2 + 15x - 9

 

17.
 

 18.

 

 

19.
 

 20.

 

 21.

 
 

 22.

 

 23.